7 Lattice Points and Lattice Polytopes

نویسنده

  • Alexander Barvinok
چکیده

Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics, computer science, number theory, optimization, probability and representation theory. They possess a rich structure arising from the interaction of algebraic, convex, analytic, and combinatorial properties. In this chapter, we concentrate on the theory of lattice polytopes and only sketch their numerous applications. We briefly discuss their role in optimization and polyhedral combinatorics (Section 7.1). In Section 7.2 we discuss the decision problem, the problem of finding whether a given polytope contains a lattice point. In Section 7.3 we address the counting problem, the problem of counting all lattice points in a given polytope. The asymptotic problem (Section 7.4) explores the behavior of the number of lattice points in a varying polytope (for example, if a dilation is applied to the polytope). Finally, in Section 7.5 we discuss problems with quantifiers. These problems are natural generalizations of the decision and counting problems. Whenever appropriate we address algorithmic issues. For general references in the area of computational complexity/algorithms see [AB09]. We summarize the computational complexity status of our problems in Table 8.0.1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projecting Lattice Polytopes Without Interior Lattice Points

We show that up to unimodular equivalence there are only finitely many d-dimensional lattice polytopes without interior lattice points that do not admit a lattice projection onto a (d− 1)-dimensional lattice polytope without interior lattice points. This was conjectured by Treutlein. As an immediate corollary, we get a short proof of a recent result of Averkov, Wagner &Weismantel, namely the fi...

متن کامل

Lattice Points in Simple Polytopes

P (h) φ(x)dx where the polytope P (h) is obtained from P by independent parallel motions of all facets. This extends to simple lattice polytopes the EulerMaclaurin summation formula of Khovanskii and Pukhlikov [8] (valid for lattice polytopes such that the primitive vectors on edges through each vertex of P form a basis of the lattice). As a corollary, we recover results of Pommersheim [9] and ...

متن کامل

Ehrhart Polynomials of Lattice-face Polytopes

There is a simple formula for the Ehrhart polynomial of a cyclic polytope. The purpose of this paper is to show that the same formula holds for a more general class of polytopes, lattice-face polytopes. We develop a way of decomposing any d-dimensional simplex in general position into d! signed sets, each of which corresponds to a permutation in the symmetric group Sd, and reduce the problem of...

متن کامل

Lattice 3-Polytopes with Few Lattice Points

This paper is intended as a first step in a program for a full algorithmic enumeration of lattice 3-polytopes. The program is based in the following two facts, that we prove: • For each n there is only a finite number of (equivalence classes of) 3polytopes of lattice width larger than one, where n is the number of lattice points. Polytopes of width one are infinitely many, but easy to classify....

متن کامل

3-Dimensional Lattice Polytopes Without Interior Lattice Points

A theorem of Howe states that every 3-dimensional lattice polytope P whose only lattice points are its vertices, is a Cayley polytope, i.e. P is the convex hull of two lattice polygons with distance one. We want to generalize this result by classifying 3-dimensional lattice polytopes without interior lattice points. The main result will be, that they are up to finite many exceptions either Cayl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016